Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.404
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Nature ; 629(8010): 184-192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600378

RESUMO

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios , Glucocorticoides , Inflamação , Macrófagos , Mitocôndrias , Succinatos , Animais , Feminino , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Carboxiliases/metabolismo , Carboxiliases/antagonistas & inibidores , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Citocinas/imunologia , Citocinas/metabolismo , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Hidroliases/deficiência , Hidroliases/genética , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Ativação Enzimática/efeitos dos fármacos
2.
Plant Physiol Biochem ; 208: 108455, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428157

RESUMO

'Zaosu' pear fruit is prone to yellowing of the surface and softening of the flesh after harvest. This work was performed to assess the influences of L-glutamate treatment on the quality of 'Zaosu' pears and elucidate the underlying mechanisms involved. Results demonstrated that L-glutamate immersion reduced ethylene release, respiratory intensity, weight loss, brightness (L*), redness (a*), yellowness (b*), and total coloration difference (ΔE); enhanced ascorbic acid, soluble solids, and soluble sugar contents; maintained chlorophyll content and flesh firmness of pears. L-glutamate also restrained the activities of neutral invertase and acid invertase, while enhancing sucrose phosphate synthetase and sucrose synthase activities to facilitate sucrose accumulation. The transcriptions of PbSGR1, PbSGR2, PbCHL, PbPPH, PbRCCR, and PbNYC were suppressed by L-glutamate, resulting in a deceleration of chlorophyll degradation. L-glutamate concurrently suppressed the transcription levels and enzymatic activities of polygalacturonases, pectin methylesterases, cellulase, and ß-glucosidase. It restrained polygalacturonic acid trans-eliminase and pectin methyl-trans-eliminase activities as well as inhibited the transcription levels of PbPL and Pbß-gal. Moreover, the gene transcriptions and enzymatic activities of arginine decarboxylase, ornithine decarboxylase, S-adenosine methionine decarboxylase, glutamate decarboxylase, γ-aminobutyric acid transaminase, glutamine synthetase along with the PbSPDS transcription was promoted by L-glutamate. L-glutamate also resulted in the down-regulation of PbPAO, PbDAO, PbSSADH, PbGDH, and PbGOGAT transcription levels, while enhancing γ-aminobutyric acid, glutamate, and pyruvate acid contents in pears. These findings suggest that L-glutamate immersion can effectively maintain the storage quality of 'Zaosu' pears via modulating key enzyme activities and gene transcriptions involved in sucrose, chlorophyll, cell wall, and polyamine metabolism.


Assuntos
Carboxiliases , Pyrus , Pyrus/genética , Pyrus/metabolismo , Sacarose/metabolismo , Ácido Glutâmico/metabolismo , Frutas/metabolismo , Clorofila/metabolismo , Parede Celular , Pectinas/metabolismo , Carboxiliases/metabolismo , Ácido gama-Aminobutírico/farmacologia , Poliaminas/metabolismo
3.
Cell Rep ; 43(4): 113984, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520689

RESUMO

Targeting programmed cell death protein 1 (PD-1) is an important component of many immune checkpoint blockade (ICB) therapeutic approaches. However, ICB is not an efficacious strategy in a variety of cancer types, in part due to immunosuppressive metabolites in the tumor microenvironment. Here, we find that αPD-1-resistant cancer cells produce abundant itaconate (ITA) due to enhanced levels of aconitate decarboxylase (Acod1). Acod1 has an important role in the resistance to αPD-1, as decreasing Acod1 levels in αPD-1-resistant cancer cells can sensitize tumors to αPD-1 therapy. Mechanistically, cancer cells with high Acod1 inhibit the proliferation of naive CD8+ T cells through the secretion of inhibitory factors. Surprisingly, inhibition of CD8+ T cell proliferation is not dependent on the secretion of ITA but is instead a consequence of the release of small inhibitory peptides. Our study suggests that strategies to counter the activity of Acod1 in cancer cells may sensitize tumors to ICB therapy.


Assuntos
Carboxiliases , Humanos , Animais , Linhagem Celular Tumoral , Carboxiliases/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Evasão da Resposta Imune , Camundongos Endogâmicos C57BL
4.
Biotechnol J ; 19(1): e2300453, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37899497

RESUMO

The pressing challenge of cancer's high mortality and invasiveness demands improved therapeutic approaches. Targeting the nutrient dependencies within cancer cells has emerged as a promising approach. This study is dedicated to demonstrating the potential of arginine depletion for cancer treatment. Notably, the focus centers on arginine decarboxylase (RDC), a pH-dependent enzyme expecting enhanced activity within the slightly acidic microenvironments of tumors. To investigate the effect of a single-site mutation on the catalytic efficacy of RDC, diverse amino acids, including glycine, alanine, phenylalanine, tyrosine, tryptophan, p-azido-phenylalanine, and a phenylalanine analog with a hydrogen-substituted tetrazine, were introduced at the crucial threonine site (position 39) in the multimer-forming interface. Remarkably, the introduction of either a natural or a non-natural aromatic amino acid at position 39 substantially boosted enzymatic activity, while amino acids with smaller side chains did not show the same effect. This enhanced enzymatic activity is likely attributed to the reinforced formation of multimer structures through favorable interactions between the introduced aromatic amino acid and the neighboring subunit. Noteworthy, at slightly acidic pH, the RDC variant featuring tryptophan at position 39 demonstrated augmented cytotoxicity against tumor cells compared to the wild-type RDC. This attribute aligns with the tumor microenvironment and positions these variants as potential candidates for targeted cancer therapy.


Assuntos
Aminoácidos Aromáticos , Carboxiliases , Triptofano , Triptofano/química , Aminoácidos/metabolismo , Tirosina , Fenilalanina , Arginina
5.
BMC Plant Biol ; 23(1): 551, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936064

RESUMO

BACKGROUND: UDP-glucuronate decarboxylase (also named UXS) converts UDP-glucuronic acid (UDP-GlcA) to UDP-xylose (UDP-Xyl) by decarboxylation of the C6-carboxylic acid of glucuronic acid. UDP-Xyl is an important sugar donor that is required for the synthesis of plant cell wall polysaccharides. RESULTS: In this study, we first carried out the genome-wide identification of NtUXS genes in tobacco. A total of 17 NtUXS genes were identified, which could be divided into two groups (Group I and II), and the Group II UXSs can be further divided into two subgroups (Group IIa and IIb). Furthermore, the protein structures, intrachromosomal distributions and gene structures were thoroughly analyzed. To experimentally verify the subcellular localization of NtUXS16 protein, we transformed tobacco BY-2 cells with NtUXS16 fused to the monomeric red fluorescence protein (mRFP) at the C terminus under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The fluorescent signals of NtUXS16-mRFP were localized to the medial-Golgi apparatus. Contrary to previous predictions, protease digestion analysis revealed that NtUXS16 is not a type II membrane protein. Overexpression of NtUXS16 in Arabidopsis seedling in darkness led to a significant increase in hypocotyl length and a reduction in root length compared with the wild type. In summary, these results suggest Golgi apparatus localized-NtUXS16 plays an important role in hypocotyl and root growth in the dark. CONCLUSION: Our findings facilitate our understanding of the novel functions of NtUXS16 and provide insights for further exploration of the biological roles of NtUXS genes in tobacco.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Carboxiliases , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Complexo de Golgi , Uridina Difosfato Xilose/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Ácido Glucurônico/metabolismo , Glucuronatos/metabolismo
6.
Biochem J ; 480(21): 1753-1766, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37903000

RESUMO

Phloroglucinol (1,3,5-trihydroxybenzene) is an important intermediate in the degradation of flavonoids and tannins by anaerobic bacteria. Recent studies have shed light on the enzymatic mechanism of phloroglucinol degradation in butyrate-forming anaerobic bacteria, including environmental and intestinal bacteria such as Clostridium and Flavonifractor sp. Phloroglucinol degradation gene clusters have also been identified in other metabolically diverse bacteria, although the polyphenol metabolism of these microorganisms remain largely unexplored. Here, we describe biochemical studies of polyphenol degradation enzymes found in the purple non-sulfur bacterium Rubrivivax gelatinosus IL144, an anaerobic photoheterotroph reported to utilize diverse organic compounds as carbon sources for growth. In addition to the phloroglucinol reductase and dihydrophloroglucinol cyclohydrolase that catalyze phloroglucinol degradation, we characterize a Mn2+-dependent phloretin hydrolase that catalyzes the cleavage of phloretin into phloroglucinol and phloretic acid. We also report a Mn2+-dependent decarboxylase (DeC) that catalyzes the reversible decarboxylation of 2,4,6-trihydroxybenzoate to form phloroglucinol. A bioinformatics search led to the identification of DeC homologs in diverse soil and gut bacteria, and biochemical studies of a DeC homolog from the human gut bacterium Flavonifractor plautii demonstrated that it is also a 2,4,6-trihydroxybenzoate decarboxylase. Our study expands the range of enzymatic mechanisms for phloroglucinol formation, and provides further biochemical insight into polyphenol metabolism in the anaerobic biosphere.


Assuntos
Carboxiliases , Polifenóis , Humanos , Polifenóis/metabolismo , Bactérias/metabolismo , Floroglucinol/metabolismo , Floretina/metabolismo , Carboxiliases/metabolismo
7.
Cell Metab ; 35(10): 1688-1703.e10, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37793345

RESUMO

Metastasis causes breast cancer-related mortality. Tumor-infiltrating neutrophils (TINs) inflict immunosuppression and promote metastasis. Therapeutic debilitation of TINs may enhance immunotherapy, yet it remains a challenge to identify therapeutic targets highly expressed and functionally essential in TINs but under-expressed in extra-tumoral neutrophils. Here, using single-cell RNA sequencing to compare TINs and circulating neutrophils in murine mammary tumor models, we identified aconitate decarboxylase 1 (Acod1) as the most upregulated metabolic enzyme in mouse TINs and validated high Acod1 expression in human TINs. Activated through the GM-CSF-JAK/STAT5-C/EBPß pathway, Acod1 produces itaconate, which mediates Nrf2-dependent defense against ferroptosis and upholds the persistence of TINs. Acod1 ablation abates TIN infiltration, constrains metastasis (but not primary tumors), bolsters antitumor T cell immunity, and boosts the efficacy of immune checkpoint blockade. Our findings reveal how TINs escape from ferroptosis through the Acod1-dependent immunometabolism switch and establish Acod1 as a target to offset immunosuppression and improve immunotherapy against metastasis.


Assuntos
Neoplasias da Mama , Carboxiliases , Ferroptose , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/metabolismo , Neutrófilos , Carboxiliases/metabolismo , Melanoma Maligno Cutâneo
8.
Genes (Basel) ; 14(9)2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761968

RESUMO

Aromatic L-amino acid decarboxylase deficiency (AADCd) is a rare recessive metabolic disorder caused by pathogenic homozygous or compound heterozygous variants in the dopa decarboxylase (DDC) gene. Adeno-associated viral vector-mediated gene transfer of the human DDC gene injected into the putamen is available. The typical presentation is characterized by early-onset hypotonia, severe developmental delay, movement disorders, and dysautonomia. Recently, mild and even atypical phenotypes have been reported, increasing the diagnostic challenge. The aim of this multicentric study is to identify the prevalence of AADCd in a population of patients with phenotypic clusters characterized by neurodevelopmental disorders (developmental delay/intellectual disability, and/or autism) by 3-O-methyldopa (3-OMD) detection in dried blood spots (DBS). It is essential to identify AADCd promptly, especially within non-typical phenotypic clusters, because better results are obtained when therapy is quickly started in mild-moderate phenotypes. Between 2021 and 2023, 390 patients with non-specific phenotypes possibly associated with AADCd were tested; none resulted in a positive result. This result highlights that the population to be investigated for AADCd should have more defined clinical characteristics: association with common signs (hypotonia) and/or pathognomonic symptoms (oculogyric crisis and dysautonomia). It is necessary to continue to screen selected clusters for reaching diagnosis and improving long-term outcomes through treatment initiation. This underscores the role of newborn screening in identifying AADCd.


Assuntos
Carboxiliases , Desnutrição , Transtornos do Neurodesenvolvimento , Humanos , Recém-Nascido , Hipotonia Muscular , Transtornos do Neurodesenvolvimento/diagnóstico
9.
Artigo em Inglês | MEDLINE | ID: mdl-37562582

RESUMO

In fishes, the availability of taurine is regulated during ontogenetic development, where its endogenous synthesis capacity is species dependent. Thus, different pathways and involved enzymes have been described: pathway I (cysteine sulfinate-dependent pathway), cysteine dioxygenase type 1 (cdo1) and cysteine sulfinic acid decarboxylase (csad); pathway II (cysteic acid pathway), cdo1 and glutamic acid decarboxylase (gad); and pathway III (cysteamine pathway), 2-aminoethanethiol dioxygenase (ado); whereas taurine transporter (taut) is responsible for taurine entry into cells on the cell membrane and the mitochondria. This study determined if the tropical gar (Atractosteus tropicus), an ancient holostean fish model, has the molecular mechanism to synthesize taurine through the identification and analysis expression of transcripts coding for proteins involved in its biosynthesis and transportation, at different embryo-larvae stages and in different organs of juveniles (31 dah). We observed a fluctuating expression of all transcripts involved in the three pathways at all analyzed stages. All transcripts are expressed during the beginning of larval development; however, ado and taut show a peak expression at 9 dah, and all transcripts but csad decreased at 23 dah, when the organism ended the larval period. Furthermore, at 31 dah, we observed taut expression in all examined organs. The transcripts involved in pathways I and III are expressed differently across all organs, whereas pathway II was only observed in the brain, eye, and skin. The results suggested that taurine biosynthesis in tropical gar is regulated during its early development before first feeding, and the pathway might also be organ-type dependent.


Assuntos
Carboxiliases , Peixes , Animais , Peixes/metabolismo , Larva/genética , Larva/metabolismo , Taurina/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo
10.
Org Lett ; 25(32): 6035-6039, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37548910

RESUMO

Thioaldehyde is a highly electrophilic group under aqueous conditions and can be generated via oxidative enzymatic modifications of cysteine residues in peptides and proteins. Herein, we report the installation of thioaldehyde and aldehyde groups at the C-terminus of peptides by flavin-dependent cysteine decarboxylases from the biosynthesis of ribosomally synthesized and post-translationally modified peptides. The in situ generated (thio)aldehyde is utilized as a reactive handle for peptide bioconjugation and macrocyclization.


Assuntos
Carboxiliases , Cisteína , Cisteína/química , Peptídeos/química , Carboxiliases/química , Aldeídos
11.
J Biol Chem ; 299(8): 105005, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399976

RESUMO

S-adenosylmethionine decarboxylase (AdoMetDC/SpeD) is a key polyamine biosynthetic enzyme required for conversion of putrescine to spermidine. Autocatalytic self-processing of the AdoMetDC/SpeD proenzyme generates a pyruvoyl cofactor from an internal serine. Recently, we discovered that diverse bacteriophages encode AdoMetDC/SpeD homologs that lack AdoMetDC activity and instead decarboxylate L-ornithine or L-arginine. We reasoned that neofunctionalized AdoMetDC/SpeD homologs were unlikely to have emerged in bacteriophages and were probably acquired from ancestral bacterial hosts. To test this hypothesis, we sought to identify candidate AdoMetDC/SpeD homologs encoding L-ornithine and L-arginine decarboxylases in bacteria and archaea. We searched for the anomalous presence of AdoMetDC/SpeD homologs in the absence of its obligatory partner enzyme spermidine synthase, or the presence of two AdoMetDC/SpeD homologs encoded in the same genome. Biochemical characterization of candidate neofunctionalized genes confirmed lack of AdoMetDC activity, and functional presence of L-ornithine or L-arginine decarboxylase activity in proteins from phyla Actinomycetota, Armatimonadota, Planctomycetota, Melainabacteria, Perigrinibacteria, Atribacteria, Chloroflexota, Sumerlaeota, Omnitrophota, Lentisphaerota, and Euryarchaeota, the bacterial candidate phyla radiation and DPANN archaea, and the δ-Proteobacteria class. Phylogenetic analysis indicated that L-arginine decarboxylases emerged at least three times from AdoMetDC/SpeD, whereas L-ornithine decarboxylases arose only once, potentially from the AdoMetDC/SpeD-derived L-arginine decarboxylases, revealing unsuspected polyamine metabolic plasticity. Horizontal transfer of the neofunctionalized genes appears to be the more prevalent mode of dissemination. We identified fusion proteins of bona fide AdoMetDC/SpeD with homologous L-ornithine decarboxylases that possess two, unprecedented internal protein-derived pyruvoyl cofactors. These fusion proteins suggest a plausible model for the evolution of the eukaryotic AdoMetDC.


Assuntos
Adenosilmetionina Descarboxilase , Carboxiliases , Adenosilmetionina Descarboxilase/genética , Adenosilmetionina Descarboxilase/metabolismo , Archaea/genética , Archaea/metabolismo , Ornitina , Filogenia , Carboxiliases/genética , Carboxiliases/metabolismo , Poliaminas/metabolismo , Bactérias/metabolismo , Ornitina Descarboxilase/metabolismo , Arginina/genética
12.
Sci Rep ; 13(1): 10360, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365251

RESUMO

cis-Aconitate decarboxylase (ACOD1, IRG1) converts cis-aconitate to the immunomodulatory and antibacterial metabolite itaconate. Although the active site residues of human and mouse ACOD1 are identical, the mouse enzyme is about fivefold more active. Aiming to identify the cause of this difference, we mutated positions near the active site in human ACOD1 to the corresponding residues of mouse ACOD1 and measured resulting activities in vitro and in transfected cells. Interestingly, Homo sapiens is the only species with methionine instead of isoleucine at residue 154 and introduction of isoleucine at this position increased the activity of human ACOD1 1.5-fold in transfected cells and 3.5-fold in vitro. Enzyme activity of gorilla ACOD1, which is almost identical to the human enzyme but has isoleucine at residue 154, was similar to the mouse enzyme in vitro. Met154 in human ACOD1 forms a sulfur-π bond to Phe381, which is positioned to impede access of the substrate to the active site. It appears that the ACOD1 sequence has changed at position 154 during human evolution, resulting in a pronounced decrease in activity. This change might have offered a selective advantage in diseases such as cancer.


Assuntos
Aminoácidos , Carboxiliases , Isoleucina , Animais , Humanos , Camundongos , Domínio Catalítico , Carboxiliases/química
13.
Eur J Pharmacol ; 950: 175773, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146707

RESUMO

KW-6356 is a novel adenosine A2A receptor antagonist/inverse agonist that not only blocks binding of adenosine to adenosine A2A receptor but also inhibits the constitutive activity of adenosine A2A receptor. The efficacy of KW-6356 as both monotherapy and an adjunct therapy to L-3,4-dihydroxyphenylalanine (L-DOPA)/decarboxylase inhibitor in Parkinson's disease (PD) patients has been reported. However, the first-generation A2A antagonist istradefylline, which is approved for use as an adjunct treatment to L-DOPA/decarboxylase inhibitor in adult PD patients experiencing OFF episodes, has not shown statistically significant efficacy as monotherapy. In vitro pharmacological studies have shown that the pharmacological properties of KW-6356 and istradefylline at adenosine A2A receptor are markedly different. However, the anti-parkinsonian activity and effects on dyskinesia of KW-6356 in PD animal models and the differences in the efficacy between KW-6356 and istradefylline are unknown. The present study investigated the anti-parkinsonian activity of KW-6356 as monotherapy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets, and its efficacy was directly compared with that of istradefylline. In addition, we investigated whether or not repeated administration of KW-6356 induced dyskinesia. Oral administration of KW-6356 reversed motor disability in a dose-dependent manner up to 1 mg/kg in MPTP-treated common marmosets. The magnitude of anti-parkinsonian activity induced by KW-6356 was significantly greater than that of istradefylline. Repeated administration of KW-6356 induced little dyskinesia in MPTP-treated common marmosets primed to exhibit dyskinesia by prior exposure to L-DOPA. These results indicate that KW-6356 can be a novel non-dopaminergic therapy as monotherapy without inducing dyskinesia in PD patients.


Assuntos
Carboxiliases , Pessoas com Deficiência , Discinesias , Transtornos Motores , Doença de Parkinson , Animais , Adenosina , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Callithrix , Agonismo Inverso de Drogas , Levodopa/farmacologia , Levodopa/uso terapêutico , Transtornos Motores/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Receptor A2A de Adenosina
14.
J Biol Chem ; 299(5): 104659, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997087

RESUMO

Decarboxylation of phosphatidylserine (PS) to form phosphatidylethanolamine by PS decarboxylases (PSDs) is an essential process in most eukaryotes. Processing of a malarial PSD proenzyme into its active alpha and beta subunits is by an autoendoproteolytic mechanism regulated by anionic phospholipids, with PS serving as an activator and phosphatidylglycerol (PG), phosphatidylinositol, and phosphatidic acid acting as inhibitors. The biophysical mechanism underlying this regulation remains unknown. We used solid phase lipid binding, liposome-binding assays, and surface plasmon resonance to examine the binding specificity of a processing-deficient Plasmodium PSD (PkPSDS308A) mutant enzyme and demonstrated that the PSD proenzyme binds strongly to PS and PG but not to phosphatidylethanolamine and phosphatidylcholine. The equilibrium dissociation constants (Kd) of PkPSD with PS and PG were 80.4 nM and 66.4 nM, respectively. The interaction of PSD with PS is inhibited by calcium, suggesting that the binding mechanism involves ionic interactions. In vitro processing of WT PkPSD proenzyme was also inhibited by calcium, consistent with the conclusion that PS binding to PkPSD through ionic interactions is required for the proenzyme processing. Peptide mapping identified polybasic amino acid motifs in the proenzyme responsible for binding to PS. Altogether, the data demonstrate that malarial PSD maturation is regulated through a strong physical association between PkPSD proenzyme and anionic lipids. Inhibition of the specific interaction between the proenzyme and the lipids can provide a novel mechanism to disrupt PSD enzyme activity, which has been suggested as a target for antimicrobials, and anticancer therapies.


Assuntos
Carboxiliases , Malária , Fosfolipídeos , Plasmodium , Motivos de Aminoácidos , Cálcio/metabolismo , Cálcio/farmacologia , Carboxiliases/antagonistas & inibidores , Carboxiliases/química , Carboxiliases/metabolismo , Precursores Enzimáticos/metabolismo , Lipossomos , Ácidos Fosfatídicos/metabolismo , Ácidos Fosfatídicos/farmacologia , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/farmacologia , Fosfatidiletanolaminas/metabolismo , Fosfatidiletanolaminas/farmacologia , Fosfatidilgliceróis/metabolismo , Fosfatidilgliceróis/farmacologia , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/farmacologia , Fosfatidilserinas/metabolismo , Fosfatidilserinas/farmacologia , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Ligação Proteica , Malária/parasitologia , Proteólise/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Plasmodium/enzimologia
15.
Nat Commun ; 14(1): 1624, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959188

RESUMO

The era of inexpensive genome sequencing and improved bioinformatics tools has reenergized the study of natural products, including the ribosomally synthesized and post-translationally modified peptides (RiPPs). In recent years, RiPP discovery has challenged preconceptions about the scope of post-translational modification chemistry, but genome mining of new RiPP classes remains an unsolved challenge. Here, we report a RiPP class defined by an unusual (S)-N2,N2-dimethyl-1,2-propanediamine (Dmp)-modified C-terminus, which we term the daptides. Nearly 500 daptide biosynthetic gene clusters (BGCs) were identified by analyzing the RiPP Recognition Element (RRE), a common substrate-binding domain found in half of prokaryotic RiPP classes. A representative daptide BGC from Microbacterium paraoxydans DSM 15019 was selected for experimental characterization. Derived from a C-terminal threonine residue, the class-defining Dmp is installed over three steps by an oxidative decarboxylase, aminotransferase, and methyltransferase. Daptides uniquely harbor two positively charged termini, and thus we suspect this modification could aid in membrane targeting, as corroborated by hemolysis assays. Our studies further show that the oxidative decarboxylation step requires a functionally unannotated accessory protein. Fused to the C-terminus of the accessory protein is an RRE domain, which delivers the unmodified substrate peptide to the oxidative decarboxylase. This discovery of a class-defining post-translational modification in RiPPs may serve as a prototype for unveiling additional RiPP classes through genome mining.


Assuntos
Produtos Biológicos , Carboxiliases , Peptídeos/química , Ribossomos/genética , Ribossomos/metabolismo , Processamento de Proteína Pós-Traducional , Biologia Computacional/métodos , Carboxiliases/metabolismo , Produtos Biológicos/metabolismo
16.
Am J Physiol Gastrointest Liver Physiol ; 324(4): G295-G304, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36749568

RESUMO

Taurine is an end-product of cysteine metabolism, whereas cysteine dioxygenase (CDO) and cysteine sulfinate decarboxylase (CSAD) are key enzymes regulating taurine synthesis. Sex steroids, including estrogens and androgens, are associated with liver physiopathological processes; however, we still do not know whether taurine and sex steroids interact in regulating liver physiology and hepatic diseases, and whether there are sex differences, although our recent study shows that the estrogen is involved in regulating taurine synthesis in mouse liver. The present study was thus proposed to identify whether 17-ß-estradiol and testosterone (T) play their roles by regulating CDO and CSAD expression and taurine synthesis in male mouse liver. Our results demonstrated that testosterone did not have a significant influence on CDO expression but significantly enhanced CSAD, androgen receptor (AR) expressions, and taurine levels in mouse liver, cultured hepatocytes, and HepG2 cells, whereas these effects were abrogated by AR antagonist flutamide. Furthermore, our results showed that testosterone increased CSAD-promoter-luciferase activity through the direct interaction of the AR DNA binding domain with the CSAD promoter. These findings first demonstrate that testosterone acts as an important factor to regulate sulfur amino acid metabolism and taurine synthesis through AR/CSAD signaling pathway. In addition, the in vivo and in vitro experiments showed that 17-ß-estradiol has no significant effects on liver CSAD expression and taurine synthesis in male mice and suggest that the effects of sex steroids on the taurine synthesis in mouse liver have sex differences. These results are crucial for understanding the physiological functions of taurine/androgen and their interacting mechanisms in the liver.NEW & NOTEWORTHY This study demonstrates that testosterone functions to enhance taurine synthesis by interacting with androgen receptor and binding to cysteine sulfinate decarboxylase (CSAD) promoter zone. Whereas estrogen has no significant effects either on liver CSAD expression or taurine synthesis in male mice and suggests that the effects of sex steroids on taurine synthesis in the liver have gender differences. These new findings are the potential for establishing effective protective and therapeutic strategies for liver diseases.


Assuntos
Carboxiliases , Testosterona , Camundongos , Masculino , Feminino , Animais , Testosterona/farmacologia , Receptores Androgênicos/metabolismo , Fígado/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/farmacologia , Cisteína Dioxigenase/genética , Cisteína Dioxigenase/metabolismo , Estrogênios/metabolismo , Estradiol/farmacologia , Taurina/metabolismo
17.
J Inherit Metab Dis ; 46(2): 261-272, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564894

RESUMO

Coenzyme A (CoA) is an essential cofactor involved in a range of metabolic pathways including the activation of long-chain fatty acids for catabolism. Cells synthesize CoA de novo from vitamin B5 (pantothenate) via a pathway strongly conserved across prokaryotes and eukaryotes. In humans, it involves five enzymatic steps catalyzed by four enzymes: pantothenate kinase (PANK [isoforms 1-4]), 4'-phosphopantothenoylcysteine synthetase (PPCS), phosphopantothenoylcysteine decarboxylase (PPCDC), and CoA synthase (COASY). To date, inborn errors of metabolism associated with all of these genes, except PPCDC, have been described, two related to neurodegeneration with brain iron accumulation (NBIA), and one associated with a cardiac phenotype. This paper reports another defect in this pathway (detected in two sisters), associated with a fatal cardiac phenotype, caused by biallelic variants (p.Thr53Pro and p.Ala95Val) of PPCDC. PPCDC enzyme (EC 4.1.1.36) catalyzes the decarboxylation of 4'-phosphopantothenoylcysteine to 4'-phosphopantetheine in CoA biosynthesis. The variants p.Thr53Pro and p.Ala95Val affect residues highly conserved across different species; p.Thr53Pro is involved in the binding of flavin mononucleotide, and p.Ala95Val is likely a destabilizing mutation. Patient-derived fibroblasts showed an absence of PPCDC protein, and nearly 50% reductions in CoA levels. The cells showed clear energy deficiency problems, with defects in mitochondrial respiration, and mostly glycolytic ATP synthesis. Functional studies performed in yeast suggest these mutations to be functionally relevant. In summary, this work describes a new, ultra-rare, severe inborn error of metabolism due to pathogenic variants of PPCDC.


Assuntos
Carboxiliases , Cardiomiopatia Dilatada , Humanos , Carboxiliases/genética , Coenzima A/genética , Coração , Saccharomyces cerevisiae/genética
18.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555425

RESUMO

Current therapeutic strategies for spinal cord injury (SCI) cannot fully facilitate neural regeneration or improve function. Arginine decarboxylase (ADC) synthesizes agmatine, an endogenous primary amine with neuroprotective effects. Transfection of human ADC (hADC) gene exerts protective effects after injury in murine brain-derived neural precursor cells (mNPCs). Following from these findings, we investigated the effects of hADC-mNPC transplantation in SCI model mice. Mice with experimentally damaged spinal cords were divided into three groups, separately transplanted with fluorescently labeled (1) control mNPCs, (2) retroviral vector (pLXSN)-infected mNPCs (pLXSN-mNPCs), and (3) hADC-mNPCs. Behavioral comparisons between groups were conducted weekly up to 6 weeks after SCI, and urine volume was measured up to 2 weeks after SCI. A subset of animals was euthanized each week after cell transplantation for molecular and histological analyses. The transplantation groups experienced significantly improved behavioral function, with the best recovery occurring in hADC-mNPC mice. Transplanting hADC-mNPCs improved neurological outcomes, induced oligodendrocyte differentiation and remyelination, increased neural lineage differentiation, and decreased glial scar formation. Moreover, locomotor and bladder function were both rehabilitated. These beneficial effects are likely related to differential BMP-2/4/7 expression in neuronal cells, providing an empirical basis for gene therapy as a curative SCI treatment option.


Assuntos
Carboxiliases , Células-Tronco Neurais , Traumatismos da Medula Espinal , Camundongos , Humanos , Animais , Células-Tronco Neurais/metabolismo , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia , Neurônios/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Medula Espinal/metabolismo , Recuperação de Função Fisiológica , Diferenciação Celular/fisiologia
19.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293152

RESUMO

Catechol-O-methyltransferase (COMT) has been involved in a number of medical conditions including catechol-estrogen-induced cancers and a great range of cardiovascular and neurodegenerative diseases such as Parkinson's disease. Currently, Parkinson's disease treatment relies on a triple prophylaxis, involving dopamine replacement by levodopa, the use of aromatic L-amino acid decarboxylase inhibitors, and the use of COMT inhibitors. Typically, COMT is highly thermolabile, and its soluble isoform (SCOMT) loses biological activity within a short time span preventing further structural and functional trials. Herein, we characterized the thermal stability profile of lysate cells from Komagataella pastoris containing human recombinant SCOMT (hSCOMT) and enzyme-purified fractions (by Immobilized Metal Affinity Chromatography-IMAC) upon interaction with several buffers and additives by Thermal Shift Assay (TSA) and a biological activity assessment. Based on the obtained results, potential conditions able to increase the thermal stability of hSCOMT have been found through the analysis of melting temperature (Tm) variations. Moreover, the use of the ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim]Cl (along with cysteine, trehalose, and glycerol) ensures complete protein solubilization as well as an increment in the protein Tm of approximately 10 °C. Thus, the developed formulation enhances hSCOMT stability with an increment in the percentage of activity recovery of 200% and 70% when the protein was stored at 4 °C and -80 °C, respectively, for 12 h. The formation of metanephrine over time confirmed that the enzyme showed twice the productivity in the presence of the additive. These outstanding achievements might pave the way for the development of future hSCOMT structural and biophysical studies, which are fundamental for the design of novel therapeutic molecules.


Assuntos
Carboxiliases , Líquidos Iônicos , Doença de Parkinson , Humanos , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Levodopa/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Dopamina/uso terapêutico , Cisteína , Metanefrina , Glicerol/uso terapêutico , Trealose/uso terapêutico , Líquidos Iônicos/uso terapêutico , Catecóis/farmacologia , Catecóis/química , Estrogênios/uso terapêutico
20.
Biocontrol Sci ; 27(3): 117-130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36216563

RESUMO

Purpureocillium lilacinum has been recently found to contaminate a 20% (200,000 µg/mL) aqueous solution of polyhexamethylene biguanide hydrochloride (PHMB) . We aimed to elucidate the mechanism underlying the resistance of P. lilacinum to PHMB. First, we induced the PHMB-resistant (IR) strains IFM 67050 (IR) and IFM 65838 (IR) from the type strain P. lilacinum CBS 284.36T via cultivation in a medium containing high concentrations of PHMB. We then analyzed the DNA sequences via Illumina sequencing to evaluate the presence of genetic mutations in IFM 65838 (IR) . Further, we established an IFM 65838 (IR) uridine/uracil auxotrophic strain, and using the orotidine-5'-decarboxylase gene, pyrG as a selection marker, we tried to knockout a mutant gene in IFM 65838 (IR) using the CRISPR-Cas9 genome-editing technique. The growth rates of IFM 67050 (IR) and IFM 65838 (IR) in medium containing PHMB increased, and the minimum inhibitory concentrations (MICs) against PHMB also increased. Based on the DNA sequence analysis, we found a nonsynonymous point mutation in the gene PLI-008146 (G779A) in IFM 67050 (IR) and IFM 65838 (IR) . This point mutation leads to site combinations of splicing changes that cause partial sequences deletion (p.Y251_G281del) in the ΔPLI-008146 locus of IFM 65838 (IR) , and deletion sequences include partial adenosine/AMP deaminase motif (PF00962) orthologous to adenosine deaminase (ADA) (GeneBank: OAQ82383.1) . Furthermore, the mutant gene ΔPLI-008146 was successfully knocked out from the resistanceinduced strain using a novel CRISPR-Cas9 gene transformation method. A considerable reduction in growth rate and MIC against PHMB was observed in the absence of the mutant gene. Therefore, ADA may represent an important resistance factor in PHMB-resistant P. lilacinum.


Assuntos
AMP Desaminase , Carboxiliases , Adenosina , Adenosina Desaminase , Biguanidas/farmacologia , Hypocreales , Uracila , Uridina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA